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NEW THEOREMS ON FORCED PERIODIC~OSCILLATIONS IN 
NON-LINEAR CONTROL SYSTEMS* 

A.M. KBASNOSEL'SKII 

A general method is given for obtaining criteria, expressed in one-sided 

estimates of the non-linearities, for the existence and uniqueness of 

periodic oscillations, as well as criteria for the realizability and con- 

vergence of the harmonic balance procedure for an approximate construction 

of the periodic oscillations. The method is based on special (and not, 

apparently, previously mentioned) spectral properties of the operator of 

the periodic problem for a linear section with a bilinear transfer function. 

1. The properties of the symmetric part of the periodic-problem operator. 
We consider a linear section W, see e.g., /l-4/ with transfer function W(p) = M(p)/ L (p), 
where 

M(p)=+"'+ brp-l+ . ..+b.,,, L(p)=p’+a~p’-‘+...+q (1.1) 
and polynomials (1.1) are relatively prime, have real coefficients, and m < 1. We will denote 

by W,the section with transfer function 

W@ (P) = M(P) / 1-L (P) - a M (P)l (1.2) 

Assume that oki (k = 0,1,. . .), where ok = 2knT-r and T is a fixed positive number, are not 

roots of the equation 

L @) - UM (p) = 0 (1.3) 

Then, corresponding to any T-periodic input u(t) of W,we have a unique T-periodic output 

r (t) = A, u (t), where 

A,v(t)=~G,(t-s;T)u(s)ds (1.4) 
0 

and G, (t; T) is the corresponding pulse-frequency response /3-5/of section W,. We know that 

the operator (1.4) acts from space L, = L,(O, 2’) into space C = C(0, T) and is continuous; 

it acts in space L, = L,(O, T), is normal in the usual sense /6/, and is completely continuous; 

it is also completely continuous as an operator from L, into space f?-+r = Cl--r((), T) of 

functions which are continuous along with their derivatives up to order l-m-i and satisfy 

the condition of T-periodicity. Simple calculation shows that, with any k = 0,1,.. ., we have 
the equations 

A, (E cos o&t + q sin co&) = [E Re W, (art) i- (1.5) 
q Im W, (oki)lcos art + Iq ReW, (ai) - E Im Wa (oki)] x 
sin okt 

Assume that E. is a one-dimensional subspace of function-constants, Ek (k = 1‘2,. ..)is a 

two-dimensional subspace with basis of functions eos o& sin qt, Pk is the orthogonal projector 
in Lz onto Ek. We shall here consider the synrnetric part Ba = ‘/a(A, + A,*) of opertor (1.4). 
It follows from (1.5) that 

B,u = kz Re W, (%i) P,.u (USLd U.6) 

Operator (1.6) is selfadjoint and completely continuous (since m (1) in L,. Ifit is 

non-negative definite, its fractional powers are defined /6/: 

&VU = 2 [Re W, (oai)]V Plu 
M(lo~i)itO (1.7) 

With y>O these fractional powers are completely continuous in &while if y (0 they 
are unbounded operators; they cammute in a natural way with operator (1.4). We put 

H = B-“A = A B-'" (L aa a= (1.8) 
An important role is played below by the polynomial 

II (0) = Re Df (oi)L (- oi)l (- 00 < o < a) 
of even degree 2n (M,L), and by the quantities 

(1.9) 
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a- (T)= 
k=. 1 ,,;n;(m i)zo n (ad / I M (Oki) I2 (1.10) .., k 

a+ (T) = sup 
k=W, . . ..M(oki)+o 

II (Ok) / I M (ori) I2 (1.11) 

If n (M, L) < m (e.g., when m = 1 - I), both quantities (1.10) and (1.11) are finite; 

if n(M,L)>m (e.g., when Z-m is even), only one, (1.10) or (l-11), is finite. 

Theorem 1. Let the quantity (1.10) be finite and a< a_(r). Then we have the following 

four assertions: 

lo. Numbers oki (k = 0, 1, 2,. . .) are not roots of Eq.(1.3), and hence operators (1.4) 
and (1.6) are defined. 

2O. Operator (1.6) is non-negative definite. 

30 
4O : 

Operator (1.8) acts and is continuous in space L,. 
If the extra condition az (M,L)>m holds, then (1.8) acts from space L, into 

space CNM. 0-m-l and is completely continuous. 

Proof. If some o,i were a solution of Eq.(1.3), it would follow, since M(p) and L(p) 
are relatively prime, that M(ofi)#O. Hence we should have 

a = L (%i) / M (oki) = n (ok) / 1 M (oki) I2 > a_ (T) 

which contradicts the hypotheses. This proves the first claim. 

Consider the eigenvalues 

Pk (a) = ReW, (oki) = [II (ok) - a ) M (oki) II Akma 
(Ab = 1 L (oki) - aM (oki) I) 

of operator (1.6). If M (qi) = 0, then Pk (a) = 0. If M (oki) # 0, then 

pk (a) = In (ok) / ) M (Oki) 1% - Cd 1 M ((I@) @k-’ > 
[Ct._ (T) - CC] 1 M (oki) 12Ak-a > 0 

(1.12) 

so thatthesecond claim holds. 
Consider the polynomial II (o)- a I M(h) I*. Its degree is not less than 2m, since 

otherwise the equation 

lim n(~)-“l~M(oi)I” =O 
&I- I M (4 I* 

would imply a contradiction a> a_ (T) with the hypotheses. Hence for eigenvalues (1.12) we 

have 

lim k-2+m) -< iy) 
h-.m k$(a) 

whence it follows that 

(1.13) 

Using Eqs.(l.5), we can write operator (1.4) as 

(1.14) 

where each operator U,(a) acts and is isometric in the corresponding subspace Ek. By (1.14), 

operator (1.8) is 

(1.15) 

where v,: (a) = 0, if M(wki) = 0, and vk (a) = I W, (CO&) I [pk (a)l-'/*, if M (a&# 0. BY (1.13), 

we have 1 vk (a) IQ c< 00 (k = 0, 1,. . .). Hence 

(I H,u Ija = kf;vt’(a) 1) U&(a) Pku II2 = $J vkz(a)II Pk.u 11'< C2 II u ]I2 (UEL) 
k=O 

i.e., the thrid assertion holds. 

Let the extra condition n (M, L)> m hold. Then the degree of polynomial n(a)-- I 
M (oi) 1’ is the same as 2x(M,L) and we have the relation, stronger than (1.13): 

(1.16) 
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We put 

Ru= g (I+ k)-NM,L)+"'Ph.u (u ELa) (1.17) 
k=O 

Operator (1.17) is completely continuous (as is easily proved by the methods given in /7/), 

as an operator from L, into space Cn(M,L)-m-i. From (1.15) we have the equation Ha = RH,O, in 

which 

H,‘u = 2 (1 + k)-* L)-m,‘k (a) uk (a) P,u 
k=D 

(u E La) (1.18) 

No”, to prove the fourth claim, it only remains to note that, by (1.16), operator (1.18) 

is continuous in L,. 
When proving the fourth claim we have used the continuity of Ht as an operator from L1 

into p(M. U-m-1 Operator (1.18) in fact acts from L, into narrower functional spaces, so that 

the fourth claim could obviously be strengthened; but we shall not do this, since it involves 

introducing special terminology. 

The theorem is easily modified for the case when the quantity (1.11) is finite and we 

have a>or+(T). 

2. Forced oscillations in non-linear single-circuit systems. Consider a 

system consisting of a linear section W, embraced by non-linear feedback. The problem on the 

forced oscillations of this system is described, see e.g., /l/, by the equation 

(2.1) 

The function f(t,r) is assumed to be T-periodic in t and continuous in the set of its 

variables. The assumption of continuity is introduced to simplify the treatment; without this 

assumption, we have to use concepts such as superpositional measurability, Caratheodory con- 

ditions, and occasional passage to generalized solutions, etc. 

We introduce the notation 

w(T, cc) = sup 
M (oki) 

kq,, 1, P,... L @ki) - cuu t”ki) I (2.2) 

If the quantity (2.2) is finite, and 

I f (t, 4 - = I < c I 5 I + Cl (2.3) 
where cw(T, a)< 1, then Eq.(2.1) has at least one T-periodic solution (a "T-solution"), which 

is continuous along with its derivatives up to order 1 -nz. This assertion follows at once 
from the results of /5/. The main role is played below, not by conditions of type (2.3), but 

by one-sided constraints on the non-linearity. 
We shall say that the non-linearity f(t, z) is correctly matched with section W if either 

number (1.10) is finite and 

xf (t, x) g ax2 + a1 (- 00 < t, x < ml, a < a- (T) 

or else number (1.11) is finite and 

(2.4) 

xf (t, I) > c&x2 - a, (- CaJ c 6 x c w), a> a+ (T) (2.5) 

Theorem 2. Let non-linarity f(t,x) be correctly matched with the linear section W. If 

R (M, L),< m, where 2n (M,L) is the degree of polynomial (1.9), we assume that, in addition, 

If (6 5) I < hx2 + h, (- 00 < t, x < w) (2.6) 
Then, Eq.(2.1) has at least one T-solution, which is continuous along with its derivatives 

up to order 1 -m. 

Proof. We shall confine ourselves to the case when the number (1.10) is finite and 

inequalities (2.4) hold. Since m<q(T), then, by the first assertion of Theorem 1, operator 
(1.4) is defined. Hence the problem on the T-solutions of Eq.(2.1) is equivalent to the 
equation (Aa is the linear integral operator (1.4)) 

x (t) = A,Fa x (t), Fax (t) = f It,, x @)I - ccx (t) (2.7) 
The solution of Eq.(2.7) will be sought in the form x(t) = Aay (t). Then, the function 

x(t) will be an 1 -m times continuously differentiable T-solution of Eq.(2.1), if y(t) is 
a continuous solution of the equation 

y (t) = Fa-4,~ (t) (2.8) 
Since the operator FaAa acts and is completely continuous in space C, the Leray-Schauder 

principle /8/ can be used to prove that Eq.(2.8) is solvable in C. For this, we prove a common 
a priori estimate for the norms in C of all solutions of all equations, with he IO,11 

Y (t) = hFaA,y (t) (2.9) 
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Let Y,(t)= C be the solution of (2.9) with h = h,E [O, 11. We multiply equation Y*(t)= 
h,F&k~Y*(t) scalarly (in the sense of the scalar product in La) by the function A,Y* (t). BY 
(2.4), we have the estimate 

T 

(Y* (3, &Y, WI = L s {f Is, &ye (41 --a&~, (-91 Ad, (4 KT= 
r) 

But, by the second assertion of Theorem 1, 

(Y*(% &Y* (G) = (Y* (% K&V* G))= II ~~Y*(~) Ilk 

Hence 

II &Y*(f) j/L, < 1/Tal (2.10) 

We first assume that x (M,L)>m. Then, by (2.30) and the fourth assertion of Theorem 
1, we have 

I; &Y* (l)::c G /I II,11l+.cII @Y* @)llL.< IJHa IIL+c 1/G=%< 00 

whence we have the a priori estimate 

I Y, (t) I < max ~f(z,U)--ccau~=a~<m. 
T..fO. Tl. IUIQCC, 

Now let n (M, L) < m. From the third assertion of Theorem 1 and (2.101, we have 

II &/y,(t) I&< II rr, jlr.,-+~,ll ~~Y*(~~ llr,< I! H=I/+L~ y'==~ 

whence, by (2.6), 

1. fJ * I II Y, 6) IL, < as. But the operator A, acts from L1 into C and is continuous; hence 

II hay, W llc < II & ILc a5 = ~6 
and we have the a priori estimate 

II Y* (Q IlcG max lelo,T1,,U,_Jf (7. a) - an 1 = a7 < co- 

If the function f(t.2) is notcontinuous, to prove the solvability of Eq.(2.8) we apply 
the Leray-Schauder principle according to the same scheme. But Eq.(2.8) then has to be 
considered in spaces other than C (e.g., in space A,). 

3. Criteria for the uniqueness of forced oscillations. If the number (2.2) 
is finite and 

I f (6 4 - f (6 Y) - a lx - Y) I < c I 5 - Y I 
(---0Dc1, I, y(m) 

(3.1) 

where cw(T, a)< 1, then the uniqueness of the T-solution of Eq.(2.1) is easily obtained from 
the principle of contraction mappings. Theorem 1 leads to uniqueness criteria of a different 

type. 
We shall say that f(t,x) satisfies a one-sided Lipschitz condition, matched with section 

W, if either number (1.10) is finite and 

@ - Y) [f (t? 4 - f (t, y)l < a@ - YY (-- m c t, *, Y cm1 

a < a- (27 

(3.2) 

or else number (1.11) is finite and 

(r - y) if (r, x) - f (t, y)l> a (5 - YP (-- co < t, x, y < m) 

a > a, (T) 

(3.3) 

Conditions (3.2) and (3.3) are equivalent to f(t,x)- ax being suitable 
respect to 2. If f(t, I) is differentiable with respect to s,condition (3.2) 
the bound fx’ (t, 2) < a, and (3.3) to the bound f=! (t, z)) a. 

Theorem 3. Let f(t, x) satisfy a one-sided Lipschitz condition matched 
section W. Then, Eq.(2.1) has not more than one continuous X-solution. 

Proof. We shall confine ourselves to the case when the number (1.101 

monotonic with 
is equivalent to 

with linear 

is finite and 
condition (3.2) holds. Let P, be the orthogonal projector from the linear hull E, of all 
Z$ with numbers k for which M(w~i) = 0. Obviously, dim E* < m. 

Let =1 @f and rs (t) be T-solutions of Eq.(Z.lf. From the equations zl(t)= &F&,(t), 
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x8 (t) = A,F,x,(t) it follows that, for y,(t) = F,x, (t), Y, (t) =F& (t); we have the relations 

Y, e) = FaAaPr (t), Y, (t)= ~~-Q/,(~). 

By Theorem 1, we obtain from (3.2) the estimate 

II &'(yr -!&ll:.=(~l-!/yt, &Q/l--z))=(~/r--_yat &(yl-_yz))= 
T 

5 [Fw4zyl(s) - F,&YP @)I [&YI (4 - &YB WI ck < 0 
0 

Hence Bay*yl (t) = Ba’/*ya (t). It therefore follows that (I-p*) yr(t)=(Z---&(t), i.e., 
(Z-P+) P,sr(t) = (Z-P*) .F,x,(t). But Aa* = 01 hence A,Faxl(t) = A,Faxa(t), i.e., the functions 

Xl (t) and x8 (t) are identical. 

4. Application of the harmonic balance method. The harmonic method (HBM) is 
widely used in control theory, see e.g., /3, 9-ll/ and the quoted references. It originates 
from the work of Bogolyubov and Krylov, and amounts to a projection procedure. 

Denote by RN the orthogonal projector RN = P, + PI + . . . f P,v onto the (2N + I)-dimensiona 
subspace E(N) of trigonometric polynomials which contain only harmonics sin wt, cos mit (k = 0, 
1 N). In HBM we fix an integer N>O and seek the approximate T-solution of Eq.(2.1) as 
a'tri)gonometric polynomial x~(t)~ E(N); its unknown 2N+l coefficients are chosen in such 
a way that XN (t) is a solution of the equation 

(4.1) 

We can regard (4.1) as a system of 2N + 1 scalar equations. An HBM is called realizable 
if (4.1) has a solution for any N. As usual in the theory of projection procedures for solving 
non-linear equations, it is said to be convergent with respect to the norm of space E if, as 
N-+00, the Hausdorff distance in E from the set of solutions of Eq.(4.1) to the set of all 
T-solutions of Eq.(2.1) tends to zero. 

If the operator (1.4) is defined, the problem of the T-solutions of Eq.(4.1) is equivalent 
to the operator equation x(t) = AaR~Fax(t), similar to Eq.(2.7); and this equation can be 
studied by the constructions of Sects.2 and 3 (see also /5/). Ue shall confine ourselves 
to making one assertion. 

Theorem 4. In the conditions of Theorem 2, the HBM for obtaining the forced oscillations 
is realizable and converges with respect to the norm of space Cl-m. In the conditions of 
Theorem 3, Eq.(4.1) for any N has a unique T-solution. 

When proving the realizability of HBM in the conditions of Theorem 2, no use is made of 
estimate (2.6). 

The above constructions, connected with one-sided estimates of non-linearities (like the 
constructions of /5/, connected with two-sided estimates), can be extended to more complicated 
systems than (2.11, e.g., to systems with delay (regarding such systems see e.g., /12/j, to 
systems with derivative-based controls, and to those with hysteresis, etc. 
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ON OPTIMAL PROBLEMS OF THE THEORY OF ELASTICITY WITH UNKNOWN BOUNDARIES* 

L.V. PETUKHOV 

In optimal-design problems in the theory of elasiticty when the shape of 

the boundary is sought /l-3/, the domain varies and in the long run is 
subject to determination, unlike design problems when the elastic moduli 

of the material are unknown /4, 5/. The solution of such problems is 

often irregular in nature /2/. In this connection, the need arises for 

a classification of a suitable set of allowable domains that can be given 

by using two parameters. For this set of domains a variational concept 

is presented and a theorem is proved on the existence of variations of 

the displacements of an elastic structure. 

1. The class of domains under consideration. Let R” be an n-dimensional Euclidean 

space of vectors X (n = 2 or 3) in which a Cartesian coordinate system is defined by the 

directions ei such that x=ziei. Here and henceforth, the satin subscripts take the values 

1 ( . . ., n; summation from 1 to R is assumed over the repeated subscripts in the products. 

Definition 1. The set /6/ 

I. = {y E R” 1 y = y (to), to E 2’) 

T = {To= (9, . . . ,~n)lO<ra<l,O<~~~To<I} 

yk (7') E f? (T), m > 1 

is called a differentiable (n- I)-dimensional cell, when Cm is a space of m times differentiable 

functions, the vectors r, = @\ @are linearly independent for VT"E T, i.e., form a covariant 

moving basis of the coordinate system e/7/, the mapping yk(zO) is one-to-one in T. Here and 

henceforth, the Greek indices take the values 2,.. .,n,and summation from 2 to R is assumed in 

the repeated super- and subscripts in the products. 

We determine the normal direction r1 =rl(y) at each point y E r, where we select its 

direction such that 

Y = Y (.c') = det I! rlre . . . r, 1) > 0 (1.1) 
The area element of the surface J? is determined by the formula /8/ 

dr = y (t') a,?. . . CW = Y (r") at" 

We introduce curvilinear coordinates /7/ 

x (r) = y (t") + zlrl (y (TO)), r = (t’, . . ., t") (1.2) 

in the neighbourhood of r and we calculate the covariant vectors 

R,(r)=ax/cW= r,--&.t, R,(y)=r,(y) (1.3) 

where t = t (y (7”)) = - V”r, is the curvature tensor of the surface r, V” =raa/W is an (n-l)- 

dimensional Hamilton operator, and ra is the contravariant basis of the coordinate system +. 

The tensor t and the direction r1 depend only on the cells r but not on the selection of the 

coordinates -c". 

Let X (T) = det 11 R,R, . . . R, 11 be the Jacobi matrix of the coordinate transformation X(.t). 

It follows from (1.3) that 

x (.t) = Y (70) [I + I, (t) (- T’) + . . . + 1,l (t) (-- w-1l 
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